
Inf. J. Hem Mass Trawfer. Vol. 12, pp. 1182-l 187. Pergamon Press 1969. Printed in Great Britain 

HEAT TRANSFER IN A TUBE WITH FORCED CONVECTION, INTERNAL 
RADIATION EXCHANGE, AXIAL WALL HEAT CONDUCTION AND ARBITRARY 

WALL HEAT GENERATION 

R. S. THORSEN 

Assistant Professor, Dept. of Mechanical Engineering, New York University, New York 10453 

(Received 26 Augusi 1968 and in revisedform 26 February 1969) 

A Iv% 
B. 
d, D. 
k. 
L+, 

N, 
P, 
Pe. 
Pr. 

4, 

4.“. 

4e. 

:;> 
r+, 

r. 
Re, 
7: 
x+, 

Y, 

NOMENCLATURE 

tube cross-sectional area, n/4(DZ - dZ) ; 
radiosity ; 
inside, outside tube diameter: 

thermal conductivity ; 
tube length ; 
&,,d/Tk ; 
k,[(D/4Z - 11 (ii,,/o)*/V4,,4 : 
Peclet number; 

Prandtl number; 

tube wall heat generation per unit Inside area; 

average 4 defined as (l/L) i 4 dx; 
II 

convection heat transfer rate per unit inside area; 

q,la,~~ ; 
Bliim ; 
radial coordinate ; 
2r+/d; 
Reynolds number; 

temperature ; 
axial coordinate measured from tube inlet ; 
.x+/d. 

Greek symbols 

s, emissivity of inside tube surface : 
1. 5. dummy variables of integration ; 

0. TIT; 
6. Stefan-Boltzmann constant ; 
7, T4ukL.P. 

Subscripts 

e. refers to tube exit; 

1, refers to tube inlet; 

W. refers to tube wall. 

INTRODUCTION 

THOUGH a number of analyses of internal flows with com- 
bined convection and radiation heat transfer have been 

presented in the literature, attention has been directed to 

the simplest case of the uniform temperature boundary 

condition with a few notable exceptions [ 141. Not only is 

the uniform temperature boundary condition frequently 

inconsistent with reality, it is also difftcult to achieve in the 

laboratory. On the other hand, uniform wall heat generation, 

which is a special case of the problem presented, can be 

approached quite accurately, e.g.. by the passage of electric 

current through the tube wall. 

The analyses of [l-3] are limited in that they require the 

convection coefficient to be specified a priori. In [l] and [2] 

the convection coefficient is assumed constant and in [3] 
it is taken to vary axially in an a priori known manner that 

is in agreement with analytic and experimental results in the 

absence of radiation exchange between the non-isothermal 

tube wall elements. Chen [4] analyzed laminar tube flow 

without any a priori assumption regarding the convection 

coefftcient. However, in his analysis radiation effects are 

introduced by assuming that heat transfer to the gas at the 

tube wall is proportional to T:(u). As shown in [l-3] this is 

not correct since it neglects irradiation at Y arrivmg from 

other elements of the non-isothermal wall. The present 

analysis is an attempt to overcome these two deficiencies in 

prior analyses. 

ANALYSIS 

A radiatively non-participating gas enters the tube 

shown in Fig. 1. The gas is assumed to enter at a uniform 

temperature T and has a fully developed velocity profile. 

All fluid properties are taken to be constant and the ends of 

the tube are considered to be. black surfaces. As previously 

shown in [l-3] an energy balance on a tube ring at x, having 

cross-sectional area A, and length dx results in 

p$-$ + f(u) + ?[F(x) + tqqL - x)] 

+ i Q&V& 5) d5 = Qob) 

when f(x) = g(x)/&,,, is introduced. The 
radiosity can be eliminated in terms of 

+ Q,(x) (1) 

dimensionless 
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,z \ I 

(2) 

u(r)=2u, l-(+JZ 
[ 1 

Frc. 1. Diagram of problem under consideration. 

In equation (1) the first term accounts for axial wall con- 
duction, the second for arbitrary wall heat generation and the 
third for radiation between an elementary ring at x and the 
tube ends. The integral arises from irradiation at x arriving 
from the remainder of the non-isothermal tube. Q,, is the 
dimensionless net radiant energy leaving an element due 
to emission and reflection, i.e., the radiosity and Q, is the 
dimensionless heat flux conducted to the gas at the tube 
wall-gas interface. The shape factor between a ring at x 
and a circular disk at the tube entrance, F, and the shape. factor 
between a differential ring at x and <, K, are given respectively 

by 

F(x) = (x2 + f)/(x’ + l)* - x (3) 

and 

4x, 0 = K(Jx - [I) = 1 - (x - 5) [(x - <)* + $I/ 

[(x - 5)* + 11’. (4) 

0,(x), 0,(x), Qa(x) and Qdx) are unknown in equations (1) 
and (2) and f(x) can be arbitrarily prescribed. Additional 
equations are obtained by considering the gas. It is shown in 
[5] that 

,,,=l.+/+[;(x-{),r]}d& (5) 

0 

Q‘.(x) = ; x G(x - () de,. 
s 0 

(6) 

For laminar flow, R appearing in the Stieljes integral of 
equation (5) is the solution to the classical Graetz problem 
and G(x - 0, has been introduced in place of -G,[Z/Pe 
(I - r). l] for compactness in equation (6). 

It is shown in [5] that 

b(x-~)=202552i:);+exp.[-A#(x-C)] (7) 

n=O 

and 

Lo = 2.704, 1, = 6.679, I, = 4n + ; for n > 2. 

Finally, the axial variation of the fluid bulk temperature, 
&,(x), is given by 

x 

edx) = 1 + ‘g Q,d& 
s 
0 

(8) 

Setting x = L in equation (8) determines 0,. 
Combining equations (I), (2) and (6) results in a single 

integro-differential equation, viz : 

ps d2B, 
E dx2 + e + fy~(x) + e: F(L - x)] -- 

0 

+ $ C(x - 0). [&JO) - l] + r’e$ (9) 

In arriving at equation (9) due consideration has been given 
to the discontinuity between the wall and fluid temperature 
that will arise at x = 0 when the boundary conditions 

WV o 
-= , 

dx 
x = 0, x=L 

are imposed. This is reflected in the terms containing 
edo) - I. 

It is noted that one term in equation (9) is a double 
integral which will require special consideration before 
attempting a solution. Recalling that K(x, l) = K(Jx - lI) 
define 
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The domain of integration 6, defined by the limits of 
integration in equation (11) is shown in figure (2). Reversing 
the order of integration results in 

‘#‘dx, 11) = j K(t - x) G(( - q) d& 
1 

(12) 

(13) 

(14) 

Equations (12), (13) and (14) were arrived at by dividing 
the integration over B into integration over domains I, II 
and III in Fig. 2 and recognizing that 

K(lx - 51) = 
( 

K(x - 0, X > 5 

K(g - x). X < 6. (15) 

Substituting equation (12) into (9) and ~rforming 
algebraic rearrangement yields 

S(x) appearing in (16) is a known function of x given by 

S(x) =f(x) - (1 - s) j: k’(lx - 51) f(t) d5 
0 

+ d[F(x) + e F(L - x)]. (17) 

Equation (16) is in many respects quite similar to equation 
(B3) of [3]. However, the present formulation has the virtue 
of allowing for an arbitrary wall heat generation and the 
convection coefficient is not assumed a priori. 

FIG. 2. Division of B into three domains of integration for 
evaluation of A(X). 

The task is now to evaluate B,(X) from equation (16). To 
this end S(x), &(.x, 5) and &(.Y, 5) must be evaluated ex- 
plicitly. For purposes of illustration laminar flow with a 
fully-develo~d velocity profile and uniform wall heat 
generation will be assumed, i.e., f(x) is taken to be 1. With 
f(x) = 1, 

g(x) = E + (1 - E + &r4) F(x) + (1 - E + ~27~ 0:) 

x F(L - u). (18) 

Determination of fbi and & requires evaluating expres- 
sions of the form 

JJx, v) = exp [ - a,(~ - q)] i K(s) exp (a,~) ds (19) 
‘I 

where a, = 2Ai/Pe. Numerical evaluation of these integrals 
can be avoided by noting that K(s) has the same qualitative 
behavior as R(s) = exp (-es). 

The criterion for selecting c such that b(s) z K(s) is 
somewhat arbitrary. However, it is to be noted that for 
s > 2 R(s) and K(s) differ by less than 0.002 when c > 2. 
Furthermore, it is not K(s) that must be approximated 
accurately; rather, it is the .J,‘s that must be accurately 
approximated when K is replaced by R. The error introduced 
into the .I,‘s by approximating K by a will depend on a, 
and the limits of integration. It will be greatest for small 
a, and small limits of integration. The smallest value of a, 
to be encountered is a, = 2$/1400 N 0.01. Thus, c is 
determined by requiring 

j K(s) e”.*** ds = a e-” eO’OIS ds. (20) 
0 

The integral on the left of equation (201 is evaluated nu- 
merically, resulting in a value of c = 2. The accuracy of this 
approximation is shown in Fig. 3. 
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FIG. 3. Accuracy of approximating K(s) by R(s). 

SOLUTION OF GOVERNING EQUATION 

The solution of equation (16) subject to the constraints 
imposed by (10) and the condition 

(21) 

was achieved numerically on a C.D.C. 6600 digital com- 
puter. The tube was divided into 30 equal axial increments 
of length 6, to allow computation of the wall temperature 
at 31 points. The linear integrals appearing in (16) were 
evaluated as sums of integrals over the appropriate number 
of divisions. For example, at the ith axial point 

b j=1 Gi 

where xi = 0. For each interval the mean value theorem 
for integrals was applied, resulting in 

0 j=l 

From the mean value theorem xi < zj < xj+i, and zj was 
arbitrarily taken as (xi + xi+ ,)/2. 

To accurately evaluate the non-linear integrals in (16) 
without introducing additional nodes, a composite quadra- 
ture formula was used. S~c~~ily, each interval xj < 5 < 
x~+~ was divided into three sub-intervals and a closed 
NewtonCones formula with a Lagrauge interpolation 
polynomial was used. In the resulting formula, the integrand, 

K(b+ - (1) f$, had to be known at two intermediate points 
in the@ interval, xj + (S/3) and xi + (26f3). K(lxi - <I) was 
known exactly at these points and consistent with the 
difference approximations for the various derivatives arising 
in (16), a straight line approximation was used to relate 
O,[xj + (a/3)] and B,[x, + (2S/3)1 to 0,&x,) and &,,(xj + 1). 
With these estimates for the integrals and a central difference 
approximation for the second derivative, equation (16) was 
reduced to a system of 31 algebraic equations, 

j$i bije, = -g(xJ + srd 1% - E Xi&,, %,+ ,)3. (24) 
j=l 

In (24) linear terms in the dependent variable appear on the 
left and Xij(t&, 6,,+ r) aroSe from the non-linear integrals 
and depends in a non-linear manner on its arguments. 

Due to its non-lin~~ty, equation (24) was solved itera- 
tively. Initially, #&z) was taken as the solution to (16) 
neglecting all radiation terms and a value assumed for Be. 
These trial values were used to evaluate the right hand 
side of (24) and the Gauss elimination method used to 
determine new values of 6,(x& and 6, was checked by 
integrating (6) and (21). The iteration procedure terminated 
when no dimensionle~ temperature changed by more than 
0.01. 

RESULTS AND CONCLUSIONS 

Because an analytic solution to equation (16) is not 
possibIe, the dependence of the solution, ti, on the para- 
meters entering this equation cannot be studied completely. 
Therefore carefut selection of the parameters is necessary 
prior to attempting a numerical solution. These parameters 
are P, T, L/d, E, N, Pe and the particular gas under considera- 
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tion. Air at 500°F was assumed to enter a a in. i.d., & in. o.d. A most interesting result is to be observed in the Nusselt 
tube and q was selected to assure large, but reasonable, wall number behavior shown in Fig. 4. For reference the uniform 
temperatures. The tube thermal conductivity was selected wall heat flux and uniform temperature Nusselt numbers 
to be representative of inconel and stainless steel at the low for the Graetz problem [6] are presented. As expected, 
extreme and copper at the high extreme. In this manner P, the results of the present analysis lie between these two 
r and N were determined. curves near the tube entrance. However, as the tube exit 

In the absence of radiation the convenient dimensionless 
length to use is Zx/Pe. However, when radiation effects are 
present x enters explicitly. Therefore, values of L and Pe 
had to be specified separately. L was selected as 20 and 50 
while Pe was taken as 280 and 1400 (corresponding to 
Reynolds numbers of 400 and 2000). Finally E was taken 
as 1.0, 0.5 and 0.1. Because 4 enters r only to the -$ power 
r could not be varied significantly while retaining reasonable 
wall temperatures. Also, since for fixed flow conditions N 
changed in direct proportion to q it was essentially deter- 
mined by the wall temperature range. Thus, only the effect 
of P, L/d. E and Pe were studied carefully. 

As expected, the effect of increasing the conduction 
parameter, P, was to reduce axial temperature gradients 
and the maximum temperature in the tube wall. The etfect 
of emissivity and L is shown in Fig. 4. 

is approached the present results continue to decrease 
(as opposed to approaching an asymptotic value) and 
eventually even become negative. This result could have 
been anticipated by examining equation (6). G(x - 5) is 
positive and largest when r is close to x. Thus, when de, = 
(dB,/dt) dc becomes negative the entire integral can become 
negative. Since 0, remained greater than t& for the entire 
tube length, defining the convection coefficient as q,/(T, - &) 
results in negative values of Nu. This unusual Nusselt 
number behavior was less pronounced for small values of E 
and large values of P since the wall temperature variation 
was less severe under these conditions. 
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NOMENCLATURE 

cross-sectional area of duct; 
area subtended by the ith flat side of duct; 
area subtended by thejth curved side of duct ; 
a constant; 
distance measured along the ith side of duct 
from a comer to the tangent point of the 
inscribed circle ; 
thermal conductivity of fluid ; 
width of the ith flat side of duct ; 
total number of flat sides of an inscribable 
duct ; 
total number ofcurved sides ofan inscribable 
duct ; 
inward normal to duct’s surface; 
perimeter of duct’s cross-section ; 
wall heat flux at duct’s inside surface; 
cylindrical coordinates ; 
hydraulic radius and radius of circle in- 
scribed in duct’s cross section, rh = 2A/P; 

square of radius of gyration of duct’s cross- 
section ; 
equation for duct’s inside surface ; 
temperature ; 
temperature at duct’s entrance ; 
time ; 
velocity of fluid in z direction ; 
velocity of fluid in r direction ; 
velocity of fluid in 0 direction ; 
Cartesian coordinates ; 

Z, thermal entrance length ; 
a, thermal diffusivity of fluid. 

Subscripts 
b, 
C, 
4 
.l* 
n, 
0, 
% 
1, 

bulk temperature ; 
center or axis of duct ; 
the ith flat side ; 
the jth curved side ; 
normal to duct’s surface ; 
duct’s entrance ; 
at duct’s surface ; 
some point in fluid after thermal entrance 
region. 

INTRODUCTION 

FLUID flow passages in modem heat exchange systems are 
often of noncircular cross-sectional shape. In fact, heat 
transfer passages which are employed in aircraft, missiles, 
space vehicles and nuclear reactors are more o&en than not 
noncircular. In these engineering applications it is of utmost 
importance that the heat exchange systems operate as 
efficiently and as safely as possible. However, at the present 
time comprehensive design criteria which can be utilized to 
analyze the fluid mechanics and heat transfer associated 
with the various components of these systems are sparse. 
This is because it is quite difficult to simultaneously analyze 
the problem of combined fluid mechanics and heat transfer 
in irregularly shaped channels as has been pointed out by 
Sparrow and Haji-Sheikh [l] and Wilson and Medwell [2]. 

To ease this situation one often seeks to separate the heat 


